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Overview 
Using the motion sensors built into iPhone 8 and later, iOS 14 provides Mobility Metrics 
that are important for your health. This includes estimates of your walking speed, step 
length, double support time and walking asymmetry ,  – all metrics that can be used to 1 2

characterise your gait and mobility. This paper provides a detailed understanding of how 
these Mobility Metrics are estimated on iPhone, including their testing and validation. 

Introduction 
Walking is a key indicator of the status of an individual’s injury,  disability  and short- and long-term health. ,  3 4 5 6

Walking mobility can represent the ability to age with independence,  and it is affected by a variety of health 7

conditions, including muscular degeneration,  neurological disease   and cardiopulmonary fitness.  8 9 10 11

A simple way that health professionals measure an individual’s mobility is by observing them walking. ,  12 13

Walking requires a suite of complex components that are co-ordinated across multiple physiological systems, 
and a single failure of any element may indicate progression of a disease or an increased risk of injury.  

Measurement of walking performance is often used to assess an individual’s health status,  track recovery 14

from injury  or surgery  and monitor changes that occur with ageing.  Some commonly used walking 15 16 17

performance measurements are walking speed, step length, double support time and walking asymmetry.  

• Walking speed, and how it changes over time, is closely related to clinically meaningful health 
outcomes.4,  Measured walking speed is frequently used to track recovery from acute health events, 18

such as a joint replacement3 or stroke,  and to monitor health changes over time, such as the 19

progression of Parkinson’s disease10,  and ageing.  20 21

• Step length is a marker of compromised mobility for certain types of neurologic and musculoskeletal 
conditions,14 and is predictive of falls and fear of falling.  Step length decreases with age, with older 22

adults showing reduced step length compared with younger people. ,  Shortening step length is an 23 24

important consideration as we age,  and early exercise interventions may provide a way to maintain 25

independence. ,  26 27

•  Double support time is the proportion of time that both feet are touching the ground during walking. 
It increases when a person has an injury16 or dysfunction, both in terms of absolute time and as 
a percentage of each gait cycle.  An increase in double support time has been related to a rise in 28

an individual’s fear of falling,22 while lower double support times are correlated with improved walking 
stability and a lower risk of falling.  29

• Walking asymmetry emerges when a unilateral pathology or injury occurs and an individual relies on 
the contralateral limb when walking. An increase in walking asymmetry occurs after an injury  or due 30

to neurodegeneration from ageing or disease.20,  A decline in bilateral co-ordination between the two 31

legs has been shown to be tied to an increased risk of falling ,  and poor surgical outcomes,30 and is 32 33

predictive of later joint injury. ,  34 35
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 The Mobility Metrics estimated using iPhone 8 and later provide a passive and non-intrusive method 
of measuring walking quality – from young age to advanced age. In the Health app in iOS 14 and later, 
these estimated Mobility Metrics can be viewed under Mobility (see Figure 1). This paper describes 
the development and validation of these Mobility Metrics on iPhone – Walking Speed, Step Length, 
Double Support Time and Walking Asymmetry – and provides recommendations for use. 

Development 
Study Design 
Data collection for the design and validation of the Mobility metrics consisted of several studies approved 
by an ethics board. All participants attended in-lab visits, consisting of up to two visits (at least 8 weeks 
apart) over the course of a year, and completed a set of walking tasks on each visit.  

All participants completed invigilated overground walking tasks across an instrumented pressure mat 
(the ProtoKinetics ZenoTM Walkway Gait Analysis System) while carrying two iPhone devices – one on each 
side of their body – in different locations: on the hip (hip clip), in a front or back pocket or in a waist pouch. 
Participants were asked to choose where to place one device to best replicate their typical behaviour – 
on either the right- or the left-hand side of the body – and invigilators placed a second device in 
a contralateral location.  

Each walking task was conducted along a 12-metre, straight-line course, with an 8-metre pressure mat 
placed in the centre. The pressure mat, an instrumented device that provides highly accurate heel-strike 
and toe-off location and timing events, was used to generate reference values for each participant's step 
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Figure 1: Mobility Metrics in the Health app in iOS 14



count, walking speed, step length, double support time and walking asymmetry. For further details on the 
experimental setup, see the “Data Sanity” section in the Appendix. 

For participants in Cohort A, tasks included four walkovers (defined as a single walk across the pressure 
mat) at an instructed self-selected speed, four walkovers at an instructed slow speed and a variable 
number of walkovers during a fast-paced, six-minute walk test (6MWT), in which participants walked back 
and forth over the pressure mat as many times as possible within a six-minute period.12 For Cohort B, 
participants were asked to complete several walkovers at a self-selected speed, a slow speed and a very 
slow speed (“as if recovering from an injury”). Participants in this cohort were recruited to simulate walking 
asymmetry by wearing a commercial knee brace.  The brace was locked to restrict movement to 30° 36

flexion and 10° extension. Cohort descriptions and groupings are shown in Figure 2. 

The performance of Mobility Metrics was assessed by directly comparing the values derived from the 
pressure mat and iPhone devices. Each iPhone in the study was considered to be an independent observer 
because of the multiple different device locations that were used during walkovers. A measurement 
recorded by one iPhone during one walking task for one participant visit is referred to as a "device visit". 
As an example, a participant wearing two devices during a visit would contribute two device visits. 
The number of straights completed on the pressure mat was multiplied by the number of device visits 
to produce the number of walkovers (see Figure 3). The statistical methods for assessing metric 
performance are described in detail in the Appendix. 
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Figure 2: Study design and data aggregation. Participants from Cohort A were separated into design and validation groups for 
the walking speed, step length, double support time and walking asymmetry metrics; pedometer steps were validated for all Cohort 
A participants. Cohort B contributed to the design of the walking asymmetry metric by getting participants to wear a single-sided knee 
brace to simulate an asymmetric gait.



  

Population 
Apple collected data for the design and validation of the Mobility Metrics across multiple studies involving two 
cohorts of study participants; studies were approved by an ethics board, and all participants consented to the 
collection and use of their data for this purpose. Cohort A was a large group of older adults who either lived 
in the local community or in an independent senior living community (see Table 1). Cohort B was a group 
of younger, able-bodied adults who were asked to wear a knee brace to elicit asymmetry (see Table 2). 
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Figure 3: Example data collection and analysis. Above are two examples of data collection for Cohort A. Participants were 
instructed to wear two devices while completing four walkovers on the pressure mat at a slow speed, four walkovers at a self-
selected speed and as many walkovers as possible in the 6MWT. Data sets for each condition were only included in analysis if they 
contained at least three valid walkovers at each instructed speed, and at least 10 valid walkovers in the 6MWT. Data across 
conditions and devices was collapsed together to calculate metric performance through estimates, such as the standard deviation 
of absolute error (σerror) and minimal detectable change.



Table 1. Cohort A participant characteristics 

Unique participants Design (N = 359) Validation (N = 179)

Demographics and biometrics

Age 74.7 (±5.4) [64, 92] 74.7 (±5.3) [65, 95]

Gender (female/male) 184/175 93/86

Height (metres) 1.66 (±0.10) [1.43, 1.95] 1.66 (±0.95) [1.44, 1.88]

BMI (kg/m2) 26.6 (±4.4) [17.4, 43.8] 26.9 (±4.1) [17.9, 39.3]

Prevalence of musculoskeletal conditions 292 (81%) 142 (80%)

Prevalence of cardiovascular conditions* 259 (72%) 124 (69%)

Prevalence of neurological conditions 54 (15%) 27 (15%)

Assistive devices 13 (5%) <10 (<5%)

Musculoskeletal conditions – number (%)

Amputation <10 (<5%) <10 (<5%)

Arthritis 94 (26%) 40 (22%)

Balance disorder 64 (18%) 34 (19%)

Degenerative disc disease 27 (8%) 11 (6%)

Head or neck problems 41 (11%) 20 (11%)

Osteoarthritis 177 (49%) 88 (49%)

Rheumatoid arthritis <10 (<5%) <10 (<5%)

Ruptured or herniated disc 23 (6%) 18 (10%)

Joint replacement surgery 58 (16%) 29 (16%)

Other 157 (44%) 75 (42%)

*Hypertension, heart attack, heart failure, coronary artery disease, stroke, hyperlipidemia, PAD, arrhythmia.

Table 2. Cohort B participant characteristics 

Design (N = 51)

Demographics and biometrics

Age 37.5 (±7.3) [26, 55]

Gender (female/male) 16/35

Height (metres) 1.73 (±0.91) [1.55, 1.89]

BMI (kg/m2) 25.9 (±4.7) [18.3, 42.7]
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Results 
Aggregate results for participants in Cohort A are shown in Table 3; these results are collapsed across 
design and validation data sets. 

Step Count  
Pedometer step count provides an objective measurement of the number of steps that a user takes while 
wearing their devices. Steps detected from Apple Watch and iPhone are intelligently fused together to 
provide an accurate estimate of a user’s all-day behaviour; the device source for the detected steps can 
be identified in HealthKit. In Figure 4, device visit data from Cohort A was analysed to establish the validity 
of iPhone step count.  

Table 3. Cohort A pressure-mat reference means, standard deviations and ranges 

Slow speed Self-selected speed Fast speed (6MWT)

mean ± SD (range) mean ± SD (range) mean ± SD (range)

Device visits 845 854 738

Walkovers 3,146 3,175 16,625

Cadence 
(steps · minute-1)

101.60 ± 10.50 
(64.8–135.6)

114.94 ± 9.70 
(70.6–146.7)

123.35 ± 9.56 
(87.4–153.2)

Walking speed 
(metres · second-1)

1.04 ± 0.18 (0.47–1.57) 1.30 ± 0.18 (0.67–1.90) 1.46 ± 0.18 (0.65–2.16)

Step length (metres) 0.61 ± 0.08 (0.34–0.86) 0.68 ± 0.08 (0.45–0.88) 0.71 ± 0.07 (0.38–0.94)

Double support time (%) 31.37 ± 3.69 
(19.56–47.08) 

28.38 ± 3.34 
(18.13–39.71)

27.00 ± 3.40 
(16.03–43.36)

Overall temporal 
asymmetry (unitless)

1.07 ± 0.04 (1.00–1.45) 1.06 ± 0.03 (1.00–1.35) 1.06 ± 0.03 (1.00–1.75)

Measuring Walking Quality Through Mobility Metrics May 2021 8

Figure 4: iPhone pedometer step-count performance. These charts show the correlation between aggregated steps registered 
from the pressure-mat reference and iPhone step count during slow speed (left-hand chart), self-selected (centre chart) and 6MWT 
(right-hand chart) walking tasks. The Pearson correlation coefficient for self-selected (1.30 ± 0.18 metres · second-1), slow speed 
(1.04 ± 0.18 metres · second-1) and 6MWT (1.46 ± 0.18 metres · second-1) step counts were all above 0.96. Self-selected and slow-
speed step values are aggregated from 3 or 4 walkovers, and 6MWT step values are aggregated from at least 10 walkovers.



Walking Speed 
The walking speed metric represents an estimate of how quickly users walk on flat ground. It’s derived from 
a model of the user’s centre of mass. As such, the metric will be most accurate when iPhone is closely 
coupled to the body (such as in a pocket or attached to a belt). Also, users must have entered an up-to-
date value for their height in the Health app for iOS.  

Table 4. Walking speed performance (mixed iPhone locations)

Metric Description Design Validation

N Participant visits (unique participants) 528 (359) 250 (179)

Walkovers Number of walkovers on the pressure mat 
that were used for comparison

15,487 7,440

Validity Standard deviation of absolute errors 
(σerror metres · second-1)

0.09 0.15

Reliability Comparison of pressure-mat reference 
and iPhone walking speed estimates 
(ICC(A,1))

0.93 0.92

Sensitivity Minimal detectable change (metres · second-1)

10th percentile (most sensitive) 0.07 0.08

50th percentile 0.13 0.14

90th percentile (least sensitive) 0.22 0.23
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Figure 5: iPhone walking-speed performance. This shows algorithm performance for the design set (left-hand chart) and the 
validation set (right-hand chart) used in the development of the walking speed metric.



Step Length 
The new step length metric is an estimation of the distance between the place where one foot hits the 
ground and the place where the other foot hits the ground while users are walking. This metric is derived 
from a model of the user’s height, along with step cadence and speed estimation while users are walking 
steadily on flat ground.  

Table 5. Step length performance (mixed iPhone locations)

Metric Description Design Validation

N Participant visits (unique participants) 528 (359) 250 (179)

Walkovers Number of walkovers on the pressure mat 
that were used for comparison

15,487 7,440

Validity Standard deviation of absolute errors 
(σerror metres)

0.05 0.05

Reliability Comparison of pressure-mat reference 
and iPhone step length estimates 
(ICC(A,1))

0.85 0.84

Sensitivity Minimal detectable change (metres)

10th percentile (most sensitive) 0.04 0.04

50th percentile 0.09 0.07

90th percentile (least sensitive) 0.14 0.12
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Figure 6: iPhone step-length performance. This shows algorithm performance for the design set (left-hand chart) and the validation 
set (right-hand chart) used in the development of step length metric.



Double Support Time 
The double support time metric provides a measurement of the percentage of the gait cycle – from heel 
strike on one foot to heel strike on the contralateral foot – that a user spends on two feet (double support). 
The metric can range from values of 0 per cent (for example, while running, individuals lunge from foot to 
foot with no overlap of two feet on the ground) to 100 per cent (for example, while standing still or during 
extreme shuffling, both feet are always on the ground). Typical walking behaviour ranges between 20 and 
40 per cent, with lower values indicating better balance. 

Figure 7: iPhone double support time performance. This shows algorithm performance for the design set (left-hand chart) and the 
validation set (right-hand chart) used in the development of the double support time metric. 
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Table 6. Double support time performance (mixed iPhone locations)

Metric Description Design Validation

N Participant visits (unique participants) 528 (359) 250 (179)

Walkovers Number of walkovers on the pressure mat 
that were used for comparison

15,487 7,440

Validity Standard deviation of absolute errors 
(σerror %)

2.91 2.95

Reliability Comparison of pressure-mat reference 
and iPhone double support time estimates  
(ICC(A,1))

0.59 0.53

Sensitivity Minimal detectable change (%)

10th percentile (most sensitive) 2.06 2.12

50th percentile 3.17 3.18

90th percentile (least sensitive) 5.06 4.51



Walking Asymmetry 
 The walking asymmetry metric provides an estimate of the percentage of time that asymmetric steps 
are detected within a walking bout. The metric doesn’t provide a classification of asymmetry severity, 
but rather the percentage of time that an asymmetric gait is detected. It can range from 0 per cent 
(indicating that all walking steps within an observed walking bout were estimated to be symmetrical) 
to 100 per cent (indicating that all walking steps observed were asymmetric). 

Figure 8: iPhone walking asymmetry. The left-hand chart shows the mean and standard deviation of iPhone walking asymmetry 
estimates, where reference values classified device visits as having symmetry, mild asymmetry or severe asymmetry. The right-hand chart 
shows the confusion matrix for the asymmetry classification, where iPhone asymmetry of 35 per cent showed a positive predictive rate of 
84.2 per cent (348 true positives from 417 asymmetry-classified device visits) and a false negative rate of 2.78 per cent (69 false 
positives from 2,671 symmetry-classified device visits). 
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Table 7. Asymmetry classification from values of overall temporal symmetry

Asymmetry

Symmetry Mild asymmetry Severe asymmetry

Overall temporal symmetry 1.0-1.1 1.1-1.5 >1.5

Participants 392 125 21

Device visits (number) 2,478 516 94



Discussion 
The Mobility Metrics described in this paper provide consumers, researchers and healthcare providers 
with a mechanism for assessing mobility during day-to-day life outside the clinic. Previous advocacy for 
gait assessment focused on cost-benefit analysis, and the recommended use of gait analysis is limited 
to certain conditions based on cost and availability of testing ; availability of these metrics on a widely 37

adopted consumer platform, such as iPhone, may expand the range of recommended applications. Other 
research has previously demonstrated the usefulness of inertial sensors, such as those found in wearable 
devices, in augmenting clinical exams by providing objective measures of impairment, monitoring disease 
progression and evaluating response to treatments.  38

The availability and application of these metrics in clinical or research settings may provide an insight 
into clinically reliable and meaningful thresholds and allow greater application of known thresholds. 
For example, a 10cm/s decrease in walking speed within a year has been associated with an increased risk 
of falls in older populations.  Short-term changes in walking speed in older adults with heart failure have 39

been shown to be prognostic of longer-term outcomes.  And walking speed, step length and double 40

support time have been used to objectively measure treatment-mediated improvements in walking 
for individuals with multiple sclerosis.  Other applications already exist and more will almost certainly 41

be discovered, as exploration may have been hindered by a lack of available, relevant data in the past. 

The development and validation of the Mobility Metrics are limited in several ways. First, due to a scarcity 
of individuals with an asymmetric gait, asymmetry was induced artificially using a knee brace in the Cohort 
B study. Although this method has been shown to reliably induce asymmetric walking,36 the mechanics of 
this type of asymmetry could differ substantially from asymmetry due to, for example, neurodegenerative 
disease  or prosthetics.  Furthermore, the study population didn’t span all adult ages and was limited 42 43

to individuals residing in Santa Clara Valley, California, USA. Although walking capacity can differ across 
demographic categories, such as race or ethnicity,  it’s widely accepted that bipedal pendular walking 44

doesn’t vary substantially once adult age has been reached, unless a person's gait becomes substantially 
impaired.  Therefore, the metrics outlined here should be accurate for tracking normal walking across 45

a person's lifespan, but they’ll need to be validated further for more specific populations.  

 In this paper, we describe the performance of Mobility Metrics on iPhone by aligning each detected step 
and gait cycle against a gold-standard pressure mat reference. In HealthKit, these metrics are aggregated 
into time bouts of valid overground walking. For this reason, the Mobility Metrics described here aren’t 
available all day (for example, they won’t be present when users are running or are hiking uphill, as shown 
in Figure 9). Instead, they’re pre-filtered to provide the most accurate output. 

Figure 9: Schematic of HealthKit metric availability. Mobility Metrics are reported in HealthKit during periods of flat, overground 
walking, while pedometer steps are reported during any activity in which steps can be reliably estimated. Because the metrics are pre-
filtered to periods when walking quality is best estimated, the availability of the metrics may not overlap with pedometer step counts. 
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The metrics are derived from a biomechanical model of walking that depends on an accurate estimate 
of leg length, which is estimated from the height entered by the user. Users should enter their height in 
the Health app for iOS to receive the most accurate estimates. No other calibration is required. Additionally, 
the availability of measurements will largely depend on the user's interaction with iPhone. Given the need 
for a tight coupling of a device to a user’s centre of mass, individuals who carry iPhone in a location that 
provides a good signal (for example, in a pocket close to the hip) will receive more frequent estimates than 
users who primarily carry iPhone in another location (for example, in their hand, in a rucksack or in a 
handbag). For users who have received at least one walking bout estimate, on average, over 80 per cent of 
them will receive at least five estimates of their Mobility Metrics per day. The metrics won’t be available if 
users have turned on Wheelchair mode in the Health app for iOS.  

Conclusions 
Mobility Metrics on iPhone allow users to assess their functional mobility opportunistically and passively. 
Tracking these metrics longitudinally over time, in a non-intrusive way, provides an objective measurement of all-
day mobility that can augment specialised functional tests and clinical questionnaires. These metrics provide 
users, researchers and healthcare providers with a new tool for tracking and quantifying functional mobility. 

Appendix 
Data Sanity 
Start and end times for each walkover were defined from the first heel strike recorded on the pressure mat 
to the final toe-off time recorded on the pressure mat. The reference values from the pressure mat were 
precisely time-aligned with iPhone estimates for step count (see the blue line in Figure 10) and Mobility 
Metrics (see the orange line in Figure 10), and direct comparisons were made for each walkover. 

Step counts were estimated for participant visits containing at least three valid walkovers for the self-
selected and slow-speed tasks, and 10 valid walkovers for the 6MWT task. Walkovers were rejected if 
participants walked off the pressure-sensitive portion of the mat or if foot contacts weren’t registered 
correctly (for example, due to partial foot landing on the pressure-sensitive mat). 

Figure 10: Experimental setup for comparing pressure mat to iPhone Mobility Metrics and step counter. Participants walked on a 
pressure mat (8 metres) that registers foot contact time and displacement. For each walkover, the number of foot contacts, foot-contact 
times and foot-contact displacements were used to determine step count, walking speed, step length and double support time on the 
pressure mat. The first and last registered foot-contact times on the pressure mat determined the walkover start and end times (purple 
line), which were precisely aligned with the iOS pedometer and Mobility Metrics. 
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Statistical Methods 

Continuous Metrics 
Time-synchronised iPhone and reference step counts were aggregated for each walking task and 
compared using the Pearson correlation coefficient (r2). 

For the development of the walking speed, step length and double support time metrics, device visits 
gathered from Cohort A were split into design and validation data sets, and the design set was used 
to develop each metric’s algorithm. Algorithm performance for the three metrics was determined by 
comparing their estimates with the reference values from the pressure mat. Metric validity was assessed 
using the standard deviation of absolute errors between reference and iPhone estimate pairs. Metric 
reliability was assessed using the Pearson correlation coefficient (r2) and inter-rater intraclass correlation 
coefficient (ICC(A,1)). Sensitivity was assessed using minimal detectable change  of each device visit, 46

with percentile distributions being reported.  

Classification Metrics 
For the development of walking asymmetry, device visit data was collated from both Cohort A and Cohort 
B. Each set of device visits was used to calculate overall temporal symmetry ratio47 and classify reference 
device visits into “symmetry”, “mild asymmetry” and “severe asymmetry” walking groups. For the device 
visits in each group, the mean and standard deviation of iPhone walking asymmetry were calculated. 
A receiver operating characteristic (ROC) analysis was then used to evaluate the ability of iPhone walking 
asymmetry to categorise participants successfully as symmetrical or asymmetrical walkers.  

Asymmetry Definition 
For each participant device visit, symmetry was calculated as an overall temporal symmetry ratio47: 

 

 

where  and  are the mean swing and stance times of strides on the pressure mat 
being calculated for the left- ( ) and right-hand ( ) sides. The definition of symmetry uses 
functions  and  in the numerator and denominator, 
respectively, to remove sidedness from the interpretation. Participants with an overall temporal symmetry 
ratio between 1.0 and 1.1 were considered to have a symmetrical gait; a temporal symmetry ratio between 
1.1 and 1.5 was considered to be a gait with mild asymmetry, and a ratio greater than 1.5 was recorded as 
a gait with severe asymmetry.  A summary of the symmetry cut-offs for the pressure mat, including the 47

number of device visits for each of the three types of walking asymmetry (symmetry, mild asymmetry and 
severe asymmetry) is found in Table 7. 

SSR =
s wingtime

s ta n cetime
* 100 (1.1)

s ym m et r y =
m a x (SSRlef t, SSRright)
min(SSRlef t, SSRright)

(1.2)

s wingtime s ta n cetime
SSRlef t SSRright

m a x (SSRlef t, SSRright) min(SSRlef t, SSRright)
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